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Abstract

Monte Carlo based methods have brought a remarkable improvement in perfor-
mance of artificial intelligence in the realm of games in recent years, whereby
human champions could be beaten in several board games of high complexity.
In this work, two Monte Carlo based approaches, the Monte Carlo Search and
the Monte Carlo Tree Search, are applied to the game of Connect Four. In
order to test and compare these two approaches with regard to performance,
games are simulated where they play against each other with equal limitations.
The better approach is then further placed against human opponents using on
the one hand a website (https://carloconnect.com/) to evaluate the algorithm’s
strength and on the other hand a 3D printed game board and robotic arm to
play with physical components. All tests are conducted on a Raspberry Pi 3
Model B to investigate the approaches’ performance in an environment with
limited available computing power and memory. The experiments demonstrate
that under these conditions the Monte Carlo Tree Search clearly outperforms
the Monte Carlo Search for every tested computing time limit. Hence, the ap-
proach that is based on the Monte Carlo Tree Search is the better solution for
this application and is called CarloConnect. Against human opponents,
CarloConnect proves itself in winning most of the games, thus playing at
human level even while having only low computing resources.
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Zusammenfassung

In den letzten Jahren hat sich die Effizienz von künstlichen Intelligenzen deut-
lich verbessert. Grund dafür ist unter anderem die Anwendung von Monte
Carlo Methoden, welche erlauben, Weltmeister in verschiedenen hochkom-
plexen Spielen zu schlagen. In dieser Arbeit werden zwei Monte Carlo basierte
Algorithmen, der Monte Carlo Search und der Monte Carlo Tree Search, für das
Spiel Vier Gewinnt angewandt. Diese werden miteinander verglichen, indem
Spiele mittels der beiden Algorithmen simuliert werden. Die Algorithmen spie-
len dafür unter den gleichen Voraussetzungen. Gegen den stärkeren Algo-
rithmus treten dann menschliche Gegner, Studenten, an. Zum einen konnten
Testspiele auf einer Website (https://carloconnect.com/) durchgeführt wer-
den, die das Spielfeld darstellt und der Gegner mittels der stärkeren KI agiert;
zum anderen wurde ein Spielfeld modelliert, ein Roboterarm ausgewählt und
mit einem 3D Drucker beides hergestellt, wobei der Roboterarm die Züge des
Algorithmus ausführt. Alle Tests werden auf einem Raspberry Pi 3 Model B
ausgeführt, um bei begrenzten Kapazitäten die Algorithmen auf ihre Stärken
untersuchen zu können. Die Ergebnisse der Tests zeigen, dass der Monte Carlo
Tree Search dem Monte Carlo Search für jede getestete Zeitbegrenzung bei
der Suche nach dem besten Zug stark überlegen ist. Folglich wird der Monte
Carlo Tree Search basierte Algorithmus CarloConnect genannt. Gegen
menschliche Gegner erweist sich CarloConnect als ein gleichrangiger Geg-
ner, der nicht nur auf menschlichem Niveau spielt, sondern gar die meisten
Partien gewinnt, trotz der geringen zur Verfügung stehenden Rechenkapaz-
itäten.
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Chapter 1

Introduction

In the last decades, artificial intelligence (AI) has become increasingly im-
portant in a multitude of domains. Tasks, that are difficult or impossible to
program by hand, such as face recognition [1] or stock market prediction [2]
can be tackled utilizing machine learning. In the domain of games, too, AI has
been applied successfully in recent years to enhance the performance of virtual
players significantly – especially in games with a high degree of complexity.

Implementing such a search algorithm for games with perfect information,
usually requires an evaluation function based on heuristic knowledge, which
determines the value of a game state. In the context of the game theory, perfect
information means that each player is always perfectly informed about all the
events that have previously occurred, including the initial conditions of all
players [3]. The more complex the game is, meaning the more possible actions
there are in a state, the more difficult and time-consuming the defining of an
evaluation function becomes. Depending on the complexity of the game, there
may be a very large number of possible game states – specially in Go where
about 10172 possible sequences of moves exist [4]. A search in a search tree that
contains all these states is therefore infeasible, due to enormous requirements
regarding computing power and memory [5].

There are several Monte Carlo based approaches which neither require an
evaluation function, making them applicable to any game of finite length, nor
need to carry out exhaustive searches through a complete search tree of states.
These approaches develop game-specific knowledge that does not need to be
complete in order to evaluate the states and choose the best action [6]. These
search algorithms are applied to many games like Poker [7] or lately to Go,
where the search algorithm AlphaGo defeated the European Go champion by
5 games to 0 [8].

In this study, two Monte Carlo based search algorithms, the Monte Carlo
Search (MCS) [9] and the Monte Carlo Tree Search (MCTS) [10], are applied
to the game of Connect Four to investigate their performance in games with
a comparable degree of complexity and the impact of different limitation fac-
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1 Introduction

tors for these approaches. The better solution for this application is called
CarloConnect. While Google is utilizing computers with extremely high
computing power, it is becoming more and more relevant to implement AIs
on embedded systems with limited computing power and memory, which is
why all experiments of this work are run on a single-board computer. For
further evaluation and applicability, CarloConnect is then tested by car-
rying out games against human opponents. Therefore, a website is hosted
on the single-board computer where the game can be played online. Further-
more, for playing with physical components, a game board for the game of
Connect Four and a robotic arm, which is utilized to perform the moves from
CarloConnect, are constructed and 3D printed. With different switches
the moves of the human opponent are registered, the game can be restarted
and different levels of difficulty can be set.
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Chapter 2

Theoretical fundamentals

In this chapter theoretical fundamentals are presented to provide all informa-
tion that are necessary to understand the approaches carried out and analysed
in subsequent chapters.

2.1 The game of Connect Four

Connect Four is a game with perfect information in which two players can drop
discs into a vertical board with 42 squares distributed in 6 rows and 7 columns.
Each square has a window, so that discs are visible from both sides of the game
board. The players make their moves in turn, where the configuration of the
board at a given turn is referred to as the state of the game, which allows for
a specific set of valid actions for a player. If a disc is inserted, it falls straight
down to the lowest unoccupied square within the selected column. The first
player to get four in a row wins, whereby orientation can be either horizontal,
vertical or diagonal.

The game is solved by Allis [11] showing that in case of perfect playing of both
players, the first player always wins if he chooses the middle column as his first
move and loses if he selects the four outer most columns. The selection of the
other two columns leads to a draw. Furthermore, Edelkamp and Kissmann [12]
calculated the total amount of possible states of over 4.5 · 1012 which would
require nearly 43.8 terabytes of memory if the value of a position is stored in
2 bits.

Figure 2.1 illustrates the board of the game and a possible configuration of the
board.
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2 Theoretical fundamentals

Figure 2.1 | The board of the game Connect Four. In this state of the game
yellow wins due to a diagonal sequence of four discs.

2.2 Monte Carlo based search algorithms

A search algorithm is an important component to solve a search problem in
AI, or more generally, in computer science and engineering [13]. An example
for such a search problem is the multi-armed bandit problem, where originally
a set of one-armed bandit machines must be played successively in an order
that maximizes the gain [14]. Therefore, heuristic techniques are commonly
used which are utilizing limited knowledge to receive probable solutions within
short time of computation [15]. Many heuristic approaches that are used these
days, for example by Google [8], rely on the Monte Carlo methods.

The idea of Monte Carlo methods is to repeat an experiment many times to
receive a large amount of results, which are statistical in nature. Due to the
law of large numbers, the average of all results can be assumed to stabilize
around the expected value for a large amount of experiments. With these
experiments, a temporary heuristic game-specific knowledge for a given state
can be obtained. “Sometimes, in spite of the random character of the answer,
it is the most accurate answer that can be obtained for a given investment of
computer time.” [16]. In the context of this work, the answer is an approxi-
mation for a best action to undertake for a given player in a given state of the
game, resulting from the computational outcome.

Two general Monte Carlo based approaches are presented in the following.
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2 Theoretical fundamentals

2.2.1 Monte Carlo Search

The Monte Carlo Search (MCS) algorithm, as first described by Tesauro and
Galperin [9], is a straightforward technique where for each of the available
actions of a current state, a large number of simulations is run, limited either
by a specified amount of simulations or by computing time. In each simulation,
a complete play through is performed. In this work, the term play through
shall imply that from a selected action the game is played virtually by selecting
actions for each player at random until a final game state is reached and the
winning player is returned.

In two-player zero-sum games, such as Connect Four, each player is assigned
a win count [17]. If the winner of a simulation is the same as the player for
whom the best action is searched for, the player’s win count is increased by
1. Analogously, in the case of a loss, the win count is decreased by 1. When
a draw occurs, the win count is not modified. As soon as all simulations are
concluded or the time limit is reached, a win rate is calculated using the win
count winsaction and the amount of simulations numsim, as in Equation 2.1.

winRate =
winsaction
numsim

(2.1)

This procedure is applied to all the available actions of a current game state,
eventually returning the action with the best win rate.

2.2.2 Monte Carlo Tree Search

As the MCS simulations are random and thus unguided, the MCS has a lack
of tactical insight. In order to compensate for this disadvantage, Coulum [10]
combined the Monte Carlo Search with a search tree, thereby creating the so-
called Monte Carlo Tree Search (MCTS) algorithm. This algorithm iteratively
builds a search tree of possible future game states, node by node, where each
node represents a state at a given player’s turn and its estimated value. When
a limiting factor, i.e. time or memory, is reached, the search iterations stop and
the most promising action is returned. The larger the tree grows the higher the
probability becomes to increase the value of the returned move, thus getting
closer to the best possible move. The way the tree is built depends on how
nodes in the tree are evaluated and selected. It should be noted that each node
is an instance that requires memory, which can be limited by the embedded
system that is utilized for the computing.

According to Chaslot et al., [18] an individual search iteration can be split into
four phases:
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2 Theoretical fundamentals

1. Selection: Starting from the root node, the tree is traversed by selecting
child nodes until a node is reached that has unexpanded child nodes
left and is thus expandable. Therefore, a selection function is needed
that in addition has to control the balance between exploitation and
exploration – where exploitation means to further utilize the best nodes
to reinforce their statistical significance, and exploration means to weight
nodes higher if they are visited less – to evaluate undetected moves.
This problem of balance is similar to the multi-armed bandit problem. A
general approach for this issue is the Upper Confidence Bounds 1 (UCB1)
policy [19]. For application with search trees, Kocsis and Szepesvári [20]
proposed the UCB1 applied to trees (UCT) strategy (see Equation 2.2),

UCT =
wi

vi
+ c ·

√
ln(vr)

vi
(2.2)

where wi is the win count of node i, vi is the visit count of node i,
vr is the root node’s visit count that correlates with the total amount
of simulations and c is a constant that favors exploitation if low and
exploration if high.

2. Expansion: One of the unexpanded child nodes is randomly selected and
added as a new node to the tree. That way, the tree is expanded by
one node with each iteration. Optionally, the tree can be expanded by
multiple nodes, i.e. by all available actions, but it is more memory-
efficient to create just one node per iteration.

3. Simulation: From the new node’s state a play through is performed that
returns a result, i.e. the victorious player of the simulated scenario.

4. Backpropagation: All nodes that are traversed by the selection are up-
dated. Thereby, their visit count is increased by 1. The result of the
simulation is subsequently backpropagated depending on the game type
and its evaluation function. In the case of a two-player zero-sum game,
similarly to the evaluation strategy presented in MCS, those nodes that
represent the player that wins according to the simulation have their win
count increased by 1. Analogously, the other nodes represent the player
that loses and have their win count decreased by 1. In case of a draw,
the win counts are not modified.

Figure 2.2 illustrates this iteration process where the players, which are repre-
sented by the levels in the tree, are identified by different colors – here shown
for a two-player game.
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2 Theoretical fundamentals

Selection
( 1 )

Expansion
( 2 )

Simulation
( 3 )

Backpropagation
( 4 )

Figure 2.2 | The four phases of an iteration of the Monte Carlo Tree Search
(MCTS) algorithm, colored for two-player games where each colour rep-
resents a player. The MCTS is an iterating search algorithm that builds a search
tree from scratch rooted at the current state to find a best action. An iteration can
be split into four phases. In the first phase the tree is traversed using a tree policy
until a node with unexpanded child nodes is reached (1). Thereupon, one of the
unexpanded child nodes is created (2) and a game is simulated by selecting actions
for each player at random until a final game state is reached, returning a result ∆ (3).
This result is then used to update all nodes that are traversed during the selection
phase including the new expanded node (4). Figure adapted from [6].

When the limiting factor is reached and consequently the iterations are stopped,
the most promising child node of the root node, representing an action, is re-
turned. Coulum [10] presents four operations for this final action selection,
which are extended by Chaslot et al. [21] with an additional one:

1. Mean child : Select the child node with the best win rate.

2. Max child : Select the child node with the highest win count.

3. Robust Max child : Select the child node with the highest visit count.

4. Mix child : Select the child node in dependency of both the visit counts
and the win rate. In case the child node with the most visits is not the
same as the child node with the best win rate, the search is continued
until there is a child node that fulfills both conditions.

5. Secure child : Select the child node that maximizes a lower confidence
bound.

Experiments from Coulum [10] evince that the best choice to make is to utilize
the Mix child since it produces the smallest mean error of those strategies.
Furthermore, the results show that the Mean child under-estimates the node
value, whereas the Max child over-estimates it. With the Robust Max child,
in turn, results with similarly small mean error can be achieved. The consid-
eration of the fact that the child node with the most visits mostly is the one
with the best win rate, too, confirms this similarity. Chaslot et al. [21] did
not measure any significant difference in performance between those final se-
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lection methods and eventually used the Robust Max Child for his Go program
MANGO.

2.3 Computing platform

Most of the electronic projects nowadays require a certain digital computer at
its heart. There are many systems that can carry out the computation [22][23].
A simple solution is a microcontroller. A microcontroller, or microcontroller
unit (MCU), is a small controller on an integrated circuit (IC) chip, that can
be instructed to carry out sequences of arithmetic or logical operations. It can
be combined with other components of a computer, for example the central
processing unit (CPU) or memory. If all components are combined on a single
IC, the system is called a system on a chip (SoC). Alternatively, the system
can be integrated on a single printed circuit board (PCB), then it is called
a system on module (SOM) or computer on module (COM). A SOM/COM
may additionally integrate digital and analog functions. If a SOM/COM is
extended by the standard connectors for any input/output peripherals to be
attached directly to the board, it is called a single board computer (SBC). An
overview of these computing platforms is demonstrated in Figure 2.3.

( 1 )

( 2 ) ( 4 )( 3 )

Figure 2.3 | Overview of different computing platforms. Four different com-
puting platforms that can be used for different purposes are presented. (1) a mi-
crocontroller unit (MCU), (2) a system on a chip (SoC), (3) a system on a module
(SOM), or computer on a module (COM), and (4) a single board computer (SBC).
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Depending on the purpose the computing platform is required for, it may be
called an embedded system [24]. Embedded systems are computing platforms
of all kind built into a device developed for a particular purpose as control,
automation, communication or many other. The connectivity of the embedded
systems is often specially designed therefore.

2.4 Electronic components

In the field of electronics, there are many components beyond those that reg-
ulate the currency and voltage. For autonomously operating robots the influ-
ence of the environment has to be digitized [25]. Therefore, sensors can be
used to transform non-electrical signals, such as light, temperature or others,
to electrical signals. In this sense, electrical switches can be seen as sensors,
too. In order to react to the environment, a robot has to do the transfor-
mation the other way around – converting the signal’s energy into mechanical
motion. Components, that carry out the mechanical motions, are called actua-
tors, whereby the motion can be e.g. pneumatic, hydraulic or electromechanic
(from motors).

Hereinafter, both sensors and actuators that are chosen for completion of this
work are described more precisely concerning their functionality.

2.4.1 Switch

Electrical switches are utilized to connect or disconnect the conducting path
of an electrical circuit [25]. There are many different types of switches such
as slide switches, pushbutton switches, toggle switches, rocker switches, micro
switches or many more. The purpose of all of them is to vary a signal that
for instance turns on a device. Basically, when the switch is pressed, a metal
contact is opening an electrical circuit and closing another one causing that
an electrical signal is transferred or interrupted.

Three types of switches are presented in the following.

Pushbutton switch

Pushbutton switches exist in many sizes, from tiny (on-board restart button of
SOMs) to the size of a hand (emergency buttons in buildings), or even bigger.
A pushbutton switch contains at least two contacts, which close or open when
the button is pressed [25]. When releasing, the button returns to its original
position, mostly due to a spring. Pushbutton switches are often utilized for
one-time signals, for example to (re)start systems or to activate an emergency
state. This can be attributed to the primitive usability – the button can be
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2 Theoretical fundamentals

pressed only in one way and one direction and returns thereupon to its original
position.

Figure 2.4 shows a pushbutton switch with a scheme of its internal construc-
tion.

AC

BD

Figure 2.4 | A pushbutton switch with a scheme of its internal construc-
tion. Pushbutton switches are mostly utilized to send a signal that activates a
system of any kind. The pins, or legs, (A) and (B) are always connected, so are
the pins (C) and (D). When the pushbutton is pressed, a circuit that connects both
sides is closed and by that all of the four pins are connected. Thereby, a signal can
be transferred from the pins (A) or (B) to the pins (C) and (D) – or the other way
around.

Rocker switch

Rocker switches are usually not very sensitive, which is why they are used to set
steady states. There are different kinds of rocker switches – some provide two
different selectable states, some three and others even more. Rocker switches
are designed for push-insertion into a sized rectangular hole in the panel of the
switch [25]. They are commonly utilized as light switches or power switches, as
once they are pushed in one state, they require a push in the opposite direction
to return in the previous state. Hence, they are simple to use and secure at
the same time.

Figure 2.5 shows a rocker switch with a scheme of its internal construction and
a typical pin-out.
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CT/I T/II

Figure 2.5 | A rocker switch and its sketched schematics. Rocker switches
are mostly utilized to turn devices on or off. The presented rocker switch provides
two terminals (T/I and T/II ) that can either be selected by the common channel
(C ). Besides those states of the two terminal, there is a third so-called "none" state,
where no signal is transferred.

Micro Switch

Micro switches have an advantage as they are small in size, like indicated by
the name. The small size of them is very valuable in the field of robotics
where limited space and the need of many sensors are common conditions.
Micro switches are very sensitive compared to rocker switches and thus used
to recognize small physical forces. Usually, they have three pins, a common
terminal (C ) and two individual channels, a normally closed (N/C ) channel
and a normally opened (N/O) channel [26].

Figure 2.6 shows a micro switch with a scheme of its internal construction and
a typical pin-out.
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C   N/O    N/C

Figure 2.6 | A micro switch with a scheme of its internal construction.
Micro switches are utilized for little forces. The common terminal (C ) can either
connect one of the two other channels, the normally closed (N/C ) or the normally
opened (N/O) one.

2.4.2 Servo motor

The radio control servo motor (RC servo motor), short servo motor, is a com-
bination of an electric motor, which is mostly direct current (DC), a reduction
gearing, control electronics and a potentiometer for position determination
[26]. All these components are suited to fit in a compact plastic case. Due to
the small size and the high precision, servo motors are much used in the field
of robotics and model making.

Servo motors are not designed for continuous rotations as conventional motors,
but rather for precise control of angular positions. Usually, positions in the
range of 0 and about 180 ◦ can be set. Some models supply a range that is
slightly wider, but it is always noticeably smaller than 360 ◦. Generally, servo
motors have three wires: one for the power supply, one for the ground and one
for a pulse width modulation (PWM) signal which controls the rotation of the
servo motor [25].

Figure 2.7 shows a servo motor with its internal construction and a typical
connectivity.
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( 1 )

GND
VCC
PWM

( 3 )

( 4 )

( 2 )

Figure 2.7 | A servo motor with its internal construction. Servo motors are
designed for precise control of angular positions. They are composed of an electric
motor (1), control electronics (2), a reduction gearing (3) and a potentiometer for
position determination (4). A servo motor needs three external signals to operate, a
power supply (VCC), a ground (GND) and a pulse width modulation (PWM) signal
to set the desired angular positions.

A PWM signal is a square pulse wave signal [27]. The width of the pulses
can be modulated to send specific signals or to lower the voltage of the output
averagely. It is determined by a frequency and a duty cycle which defines the
relation as a percentage between the pulse width and the period, that depends
on the set frequency.

In Figure 2.8 a square pulse wave on a PWM signal is demonstrated.

Servo motors respond to pulses with the width of 0.5 to 2.5ms, independently
of the value of the duty cycle. The range of the pulses can vary with different
servo motor models, but it is mostly within this spectrum [26]. With the width
of the pulse of the sent PWM signal the rotation and thus the desired angular
position can be set.

For implementation, several values may be necessary in order to configure the
PWM signal properly [28]. Some of those values, the frequency fservo, the
servo motor operates with, the clock fosc of the oscillator, that is utilized for
the signal, and its minimum pulse width tmin are given in the datasheet or
documentation of the used hardware. It should be noted, that the clock fosc
can either be software or hardware based. This means that for the clock either
the physical oscillator of the system or the clock of the CPU is utilized to
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2 Theoretical fundamentals

Figure 2.8 | A pulse width modulation (PWM) signal. Servo motors are
controlled with PWM signals to set certain angular positions. The width of a pulse
can me modulated. Servo motors regularly respond to pulse width of 0.5 to 2.5ms
– in this image a width of 2ms is shown. The relation between the pulse width and
the period is defined as duty cycle.

derive the frequency of a signal. However, both clock rates can be found in the
documentation. The remaining values need to be calculated. First the period
T of the cycle has to be determined. It is the reciprocal of the frequency fservo
(see Equation 2.3).

T =
1

fservo
(2.3)

The PWM range PWMR, which is the period of the PWM signal expressed in
the scale of the minimum pulse width of the clock, can be calculated with the
period T and the minimum pulse width tmin (see Equation 2.4).

PWMR =
T

tmin

(2.4)

The last variable that may be necessary is the clock divider PWMCD. It
configures the prescaler register, which divides the oscillator’s frequency by
the set clock divider. This way, the frequency can be decreased to any desired
value. Together with all given and calculated values the clock divider PWMCD

can be calculated as in Equation 2.5.

PWMCD =
fosc

fservo · PWMR

(2.5)
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There are libraries offering functions for configuration of the prescale register.
Still, in many cases, the parameters of the calculations above must be passed
as arguments.

2.5 Kinematic chains

In today’s industry, robots are very powerful components to operate precisely
a wide range of tasks [29]. A robotic arm is a chain of multiple bodies, called
links, connected by joints, where each joint can move its outward neighbouring
link with respect to its inward neighbour. One end of the chain is the base
which is fixed. The other end is free to move in space and holds the tool or
the end-effector [30]. Each joint of the chain can either be translational (a
prismatic joint) or rotational (a revolute joint) and has one degree of freedom.
In kinematics, these chains are called kinematic chains and can be described
mathematically and used to determine positions or angles of particular links.
Kinematics, in general, describes the relation and motion of points, links and
coordinate systems [31]. The links’ masses or the acting forces are not relevant.

With the so-called forward kinematics, the position of the end-effector in a
three-dimensional space can be calculated using the joints’ angles. It is possible
to do a determination the other way around, too. In this case, with the inverse
kinematics, from a given position of the end-effector the angles of the joints
can be calculated. Both kinematics are provided in this section. In Figure 2.9
the working directions of these two kinematics are demonstrated.

Positions of the
joints (actuators)

Position of the
tool/end-effector

Forward kinematics

Inverse kinematics

Figure 2.9 |Working directions of the forward and the inverse kinematics.
With the forward kinematics the given positions of the joints of a kinematic chain
are used to determine the position of the end-effector in three-dimensional space.
The inverse kinematics is utilized for the opposite – in dependency of the position
of the end-effector, the (possible) positions for each joint of the kinematic chain can
be calculated.

2.5.1 Forward kinematics

The objective of forward kinematics is finding the position and orientation of
a robotic arm’s end-effector as a function of its joint angles. There are two
ways for building forward kinematics – it can either be derived from its space
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with a geometric approach or determined using the Denavit-Hartenberg (DH)
convention [29].

In the geometric approach, the investigated robotic arm or system, usually
described in a 3D Cartesian coordinate system, is parsed in 2D Cartesian
coordinate systems and then solved using trigonometry. For complex kinematic
chains, this task can become very complex and thus may be difficult for humans
to solve. The DH convention, on the contrary, simplifies the calculations by
assigning four parameters, the DH parameters, to each link [32]. Thereby, the
position of each link to its respective neighbours can be sufficiently described.
In Figure 2.10 a kinematic chain, consisting of three segments, and the DH
parameters of one segment are presented.

Figure 2.10 | Denavit-Hartenberg (DH) parameters for kinematic chains.
With the DH parameters, kinematic chains can be described more easily in order
to determine the position of the end-effector of a kinematic chain. The presented
kinematic chain consists of three segments, Sn−2, Sn−1 and Sn. They are connected
by the axes Ln−2 to Ln+1. The constellation of the segments allows the calculation
of the parameters an, dn, δn and qn required for the determination. Figure taken
from [33].

The four parameters of the link Sn are determined as follows:

1. Link length an is the the perpendicular distance between the axis Ln and
the axis Ln+1.

2. Link offset dn is the distance between the normal of the axis Ln and the
axis Ln+1 and the normal of the axis Ln−1 and the axis Ln, measured
along the axis Ln.

3. Link twist δn is the angle between the axis Ln and the axis Ln+1 about
the normal of Sn.
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4. Joint angle qn is the angle between the normal of the axis Ln and the
axis Ln+1 and the normal of the axis Ln−1 and the axis Ln about the
axis Ln.

Normally, three out of the four parameters of a link are constant. The fourth
parameter, which is qn for revolute joints (rotational) and an for prismatic
joints (translational), varies.

Using the axis Ln and the normal an, a coordinate systems for the segment
(joint) Sn can be built. Accordingly, a respective coordinate system can be
built for each of the joints (see Figure 2.11).

Figure 2.11 | Joint coordinate systems according to the Denavit-
Hartenberg (DH) convention. For the DH convention the frame of each segment
of a kinematic chain must be described in respective coordinate systems. These rely
on the constellation of the segments of the chain, further presented in Figure 2.10.
Figure taken from [33].

With the DH parameters and the according generalized joint coordinate sys-
tems, a homogeneous transformation matrix T can be created for every link
[33]. This transformation matrix transfers a joint coordinate system {n − 1}
to a joint coordinate system {n} as in Equation 2.6.

n−1
nT = Rot(zn−1, qn) · Trans(0, 0, dn) · Trans(an, 0, 0) · Rot(xn, δn) (2.6)
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The multiplication using the homogeneous rotation and translation matrix
leads to Equation 2.7 [29].

n−1
nT =


cos(qn) − cos(δn) sin(qn) sin(δn) sin(qn) an cos(qn)

sin(qn) cos(δn) cos(qn) − sin(δn) sin(qn) an sin(qn)

0 sin(δn) cos(δn) dn
0 0 0 1

 (2.7)

This resulting matrix can be summarized to a matrix with two submatrixes,
the 3x3 submatrix R that describes the rotation and the 3x1 submatrix T that
describes the translation, as in Equation 2.8 [34].

n−1
nT =

 R T

0 0 0 1

 (2.8)

The transformation of the kinematic chain is the product of the homogeneous
transformation matrix of each link (see Equation 2.9).

0
mT = 0

1T · 12T · 23T ... · m−1
mT (2.9)

According to Equation 2.8, Equation 2.9 can be further summarized which
yields a matrix with a rotational and a translational component, as presented
in Equation 2.9,

0
mT =

[
0
mR

0~rm
0 1

]
(2.10)

where 0
mR is the rotation matrix, that describes the orientation of the two

coordinate systems of two ends of the kinematic chain (the fixed base and the
end-effector), and 0~rm is the position vector, that describes the origin of the
end-effector relatively to the first segment of the chain.
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2.5.2 Inverse kinematics

The aim of the inverse kinematics is to determine the positions and angles of
the joint angles of the investigated kinematic chain with a given position of the
end-effector. The required equations for the inverse kinematics are nonlinear,
meaning there is no linear relation between the end-effector and the joints of
the kinematic chain. Therefore, no general approach exists [32]. Still, there
are three approaches to solve these equations, an analytic approach, a numeric
approach and a geometric approach.

As for the forward kinematics, in the geometric approach, the investigated
robotic arm or system is parsed in 2D Cartesian coordinate systems and then
solved. For complex kinematic chains, this task can become very complex.
With the numeric approach, on the contrary, kinematic chains with rotational
and translational axes and six degrees of freedom can be solved mathematically.
The analytic approach can only be applied if certain conditions are given [32].

In general, for serial robots, the forward kinematics has an explicit outcome
– the inverse kinematics, in turn, can have infinite outcomes [33]. This can
be attributed to the variety of different possible joint positions that would
lead to the same position of the end-effector. Some of the outcomes are not
valid though, as due to the mechanical constellation, many positions are not
reachable.
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Chapter 3

State of the art

Monte Carlo methods are these days mostly utilized in combination with a
search tree, as MCTS. MCTS has great success in the difficult problem of a
Go computer, but also proves to be beneficial in a range of other domains. The
domains include games of different kind, optimisation, satisfaction, scheduling,
planning, et cetera [6].

In the domain of games, the MCTS is applied to many classic board games, as
two-player games with perfect information – mainly with success. Examples
therefore are the game of Go [35], Chinese Dark Chess [36] or Hex [37]. For
games of this kind, the MCTS is sometimes further combined with opening
books, that provide highly valued starting moves and strategies. Modern board
and card games, that are mostly discrete in information and may be on a
random basis, often have a variable initial setup that makes it impossible to use
opening books [18]. As the MCTS does not require any analytic information,
unlike other AI approaches, it can be applied to such games – to modern
games like Poker [38], Hearthstone [39] or Settlers of Catan [40]. Similarly, it
is suitable for real-time video games. Real-time games are not turn-based and
mostly multi-player games where the environment and the tasks are complex.
The MCTS is applied to several games of this complexity, for example to Ms.
Pac-Man [41] and to some games for the Atari [42], but only partially with
success. A special kind of real-times video games are real-time strategy (RTS)
games. In order to consider the problem of tactical planning of real-time games
of high complexity, the MCTS is therefore applied, too. Balla and Fern use
the game of Wargus [43] for this purpose. Furthermore, Naveed et al. utilized
the Open Real Time Strategy (ORTS) [44] Game Engine for the same reason
of investigation.

Many approaches for many real-time games can be applied successfully, but
not all in real-time yet. The games are often slowed down for the MCTS. For
classic or modern board or card games, in turn, the MCTS based AIs can be
applied with no abnormal restrictions, like slowing down the game. Due to
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this applicability, the Monte Carlo based approaches are used in this work to
build a reliable Connect Four program.

There are several Connect Four programs, the major part is based on knowl-
edge. The first published program is VICTOR. It is based on the work from
Allis [11] and implemented by him. A very similar approach is Velena from
Bertoletti [45]. It plays perfect with the help of an opening book and eight
mathematical rules, which are described by Allis [11]. Another approach uses
Velena as supervisor to learn from it during simulations [46]. Beyond these ap-
proaches, there are approaches that play against them selves to learn. Faußer
and Schwenker [47] use a neural network and a Monte Carlo policy evalua-
tion method to train their program. Thill et al. [48] utilizes temporal differ-
ence (TD) learning methods, which are similar to Monte Carlo methods, but
make additional early predictions to match more accurate predictions about
the outcome of a simulation before it is known [49]. Moreover, Young1 presents
an online Connect Four program that is trained with a neuronal network based
on AlphaZero [35], an algorithm developed by Google as a generalization and
optimization of AlphaGo [8]. All these approaches use a sort of database, that
can either be given or created with training. The training and so the database
require time, computing power, memory and disk space.

Besides these knowledge based programs, there is one more published ap-
proach, that is based on temporary heuristic knowledge gained with simula-
tions at a given state. Baier and Winands [50] present three MCTS-minimax
hybrids in order to refine the MCTS. Minimax is a decision rule that can
cut of whole branches of a search tree. For the three hybrids, the minimax is
integrated in different phases of the MCTS: in the backpropagation phase, in
the selection and the expansion phase, solely in the selection phase (for details
about the phases see Subsection 2.2.2). The results show that for Connect
Four this approach does not lead to significantly better results than a regular
MCTS approach.

None of these approaches is designed or tested on computing platforms with
limited computing power, memory and disk space, but rather the opposite
– Google’s AlphaGo is distributed over many machines and uses 48 Tensor
Processing Unit (TPU) packages [35]. A TPU is an AI accelerating application-
specific integrated circuit (ASIC) developed by Google specially for neural
network machine learning [51]. For AlphaGo the first generation of TPUs is
utilized, where each TPU provides a clock speed of 700 MHz and is combined
with 8GB of weight memory.

1Website: https://azfour.com [05.02.2020]
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Chapter 4

Materials and methods

For the experiments, the two Monte Carlo based search algorithms described
in Section 2.2, MCS and MCTS, are applied to the game of Connect Four.
In order to obtain reliable results and to ensure consistent behavior of both
algorithms, their limiting condition has to be the equal. Therefore, a fixed
amount of computing time to calculate a best move is used for both approaches.
It is notable that the computing time a simulation takes varies depending on
the game’s progress. The more progressed a game is, the less moves and thus
less time is needed to reach a final game state. This results in a decrease of
the computing time of a simulation and hence in an increase of the algorithms’
performance – they become stronger in the late game. Additionally, time is
an overarching variable that can be set independently of the used embedded
system, which is why it is utilized as the limiting factor for the two approaches.

Both search algorithms are tested by carrying out games where they play
against each other. The strength of both algorithms can thereby be evaluated
by calculating the win rate of the respective search algorithms. Therefore,
similarly to Equation 2.1, the win rate is calculated by dividing the amount of
wins by the amount of performed games. Furthermore, the simulation speeds of
both search algorithms, representing how many simulations of a search for the
first move of a game are conducted within an equal given time, are compared.

Therefore, for the tests, the defined first player (the search algorithm making
the first move) as well as the limitation factor (a computing time between 100
and 5000ms) are varied. Each of the in total 12 tests (see Table 4.1) consists of
100 simulated games and is run five times in order to quantify the fluctuations
of the performance. The stronger algorithm, CarloConnect, is then placed
against human opponents to further evaluate the AI’s strength and investigate
the humanity of its behavior, wherefore a short survey is made.
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Table 4.1 | Overview of the tests performed to compare the MCS with
the MCTS. For each of the six different computing times, tests where the MCS
makes the first move and tests where the MCTS makes the first move are performed.
Thereby, both algorithms can be evaluated equally.

Computing
time (ms)

Test n◦, first
player MCS

Test n◦, first
player MCTS

100 1_a 1_b
200 2_a 2_b
500 3_a 3_b
1000 4_a 4_b
2000 5_a 5_b
5000 6_a 6_b

In order to realize the playing against human opponents and evaluate Carlo-
Connect, a website is set up to play online. Furthermore, to play with
physical components, a 3D printed game board is designed, whereby a 3D
printed robotic arm is utilized to carry out the moves calculated from Carlo-
Connect. For the robotic arm, a printable open source 3D model is se-
lected, the EEZYbotARM MK12. The full control of the robotic arm requires
four servo motors, wherefore the MG90S3 providing metal gear for additional
strength and durability is used. In order to digitize the player’s move, a small
micro switch, the SMKW-014, is integrated in each of the seven slots for the
game pieces of the game board. For different levels of difficulty a rocker switch
of the kind DA1015 is implemented. Thereby, three different levels of diffi-
culty, meaning different time limits for CarloConnect can be selected. To
restart the game or start a new game, a pushbutton switch, the MS-1006306,
is integrated in the system, too.

All components of the game board and the robotic arm are 3D printed with
a Creality Ender 3 Pro 3D printer7, using a profile precision of 0.2mm with a
0.4mm nozzle.

To run the search algorithms, control the servo motors and process the signals,
a computing platform is required. SOMs and SBCs provide all requirements
to fulfill these necessary functionalities. In addition, they have the advantage
of being very compact, low-energy consuming, portable and mostly inexpen-
sive. The market offers several products in this realm. Two very conventional

2Website: http://eezyrobots.it/eba_mk1.html [10.01.2020]
3Datasheet: https://engineering.tamu.edu/media/4247823/ds-servo-mg90s.pdf [10.01.2020]
4Datasheet: https://workupload.com/pdf/cy9fNTrt [11.01.2020]
5Datasheet: https://mouser.com/datasheet/2/60/rocker-1109491.pdf [11.01.2020]
6Datasheet: https://mouser.com/datasheet/2/209/MS-100630-1172392.pdf [11.01.2020]
7Website: https://creality3dofficial.com/products/creality-ender-3-pro-3d-printer [17.01.2020]
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options are the Arduino8 and the Raspberry Pi9. Both computing platforms
are available in several variations, differing in performance and connectivity,
which makes them applicable for projects comparable to the one of this work.

Investigating the available variants of the Arduino exhibits that most of them
come with 2 to 32 kilobytes of memory. In consideration of the MCTS based
algorithm, having sufficient memory is an important aspect. Saying that an
object that represents a node in the search tree requires roughly 40 bytes would
result in a maximum tree size and thus an maximum amount of simulation of
51 to 819, if no memory is required for the rest of the algorithm, depending
on the Arduino variant. These amounts of simulations do not suffice for a
good approximation of the best move of the given game state. A restriction in
memory like for the Arduinos may not affect the MCS based algorithm but it is
crucial for the approach that uses the MCTS. The search of the MCTS would
be thereby limited, besides the computing time, additionally by the available
memory.

Raspberry Pis have a memory of at least 512 to 1024 megabytes – not restrict-
ing the algorithms in this regard. While Arduinos can only compile Arduino
programming language, which is based on C++, Raspberry Pis can compile any
programming language as Linux or Windows based operating systems can be
installed on them. This makes Raspberry Pis more complex but flexible, too.

Due to the limited memory of the Arduinos, a Raspberry Pi is the better
choice for this work. All tests are performed on a Raspberry Pi 3 Model B
with a 64-bit 1.2GHz quad-core processor and 1 gigabyte of memory, running
on Ubuntu 16.04.6 LTS.

8Website: https://arduino.cc/en/products/compare [12.01.2020]
9Website: https://raspberrypi.org/products [12.01.2020]
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Chapter 5

Construction

The physical components presented in this chapter are individual and must
be constructed therefore. The circuit board for the power supply is soldered.
All remaining parts are for the purpose of replicability and customization 3D
printed. In order to ensure that the components can be connected properly, a
tolerance of 0.3mm for each interstice is used for connecting parts.

5.1 Robotic arm

The EEZYbotARM MK1 robotic arm is 3D printed. The models of the arm
are provided online on the website mentioned above. The given instructions
help to compose all components including the servo motors.

For the purpose of this work, the models of the gripper are modified to facilitate
and stabilize the gripping of balls (see Figure 5.1).

Figure 5.1 | Gripper of the robotic arm. This 3D model is designed for the
EEZYbotARM MK1 robotic arm in order to facilitate and stabilize the gripping of
balls. From the perspective of the robot, (1) is the left part of the gripper and (2) is
the right part of it.
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Therefore, the palms of the gripper are adjusted stabilizing the balls from all
sides when grabbed. Furthermore, the length is extended to ensure sufficient
space between the grabbed ball and the robot arm’s body.

In Figure 5.2 the complete robot with the new gripper models and the four
required servo motors is presented. The four servo motors are used to rotate
the whole robot about the vertical axis of the ground where the robot arm is
attached to, to move the arm forwards and backwards, to move it in vertical
direction and to open and close the gripper.

Figure 5.2 | Fully composed robotic arm. The robotic arm is composed of
its original open source 3D components from the EEZYbotARM MK1 robot arm, a
for this work designed gripper for the robot arm and four servo motors. (1) rotates
the robot arm about the vertical axis of its ground plate, (2) moves it forwards and
backwards, (3) moves it in vertical direction, (4) opens and closes the gripper.
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5.2 Game board and periphery

The game board is designed to use balls instead of discs for the game, as they
can be grabbed and inserted easier. Hence, a set of seven connected individual
tubes is printed to form the game board (see Figure 5.3).

Figure 5.3 | Tube of the game board. Three perspectives of a tube are shown.
Seven tubes are connected to build the game board. The balls are visible through
the windows of the tubes, the slot and cable duct on the back side are for a micro
switch.

A tube provides six windows on front side – the human player faced side – to
see all inserted balls. On the back side, a cable duct and a small slot above
the cable duct are added. These are designed to integrate a micro switch at
the top of the tube that is used to recognize inserted balls. For the connection
to the other tubes or stands, t-profiled guide rails are applied on both sides.

The first and the last tube are connected with their free faces to the stands
of the game board, shown in Figure 5.4. The stands stabilize the set of tubes
and lift it up to provide space for releasing the balls from the tubes. Holes on
the bottom plate of the stands provide that the game board can be mounted
with screws in a fixed position.
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Figure 5.4 | Stands of the game board. For both sides of the game board a
stand is required. Each stand has the according connecting part of the t-profiled
guide rails, where (1) is the stand for the left hand side from the perspective of the
human player and (2) is the stand for the right hand side. The stands stabilize and
lift the tubes so that the balls can be released through the bottom side of the tubes.

To release the balls from the tubes, a tank is designed that can carry all balls
(see Figure 5.5). It is positioned under the tubes so that these are closed from
the bottom side. The tank is flexible, if moved in direction of the robot, the
bottom sides of the tubes are opened. This way, at the end of a game, the balls
can be removed from the tubes without dismantling the whole game board.
The tank cannot be pulled too far in direction of the human player due to a
guide rail on its tank backside.

Figure 5.5 | Tank for the bottom of the tubes. This tank is positioned at the
bottom of the tubes of the game board. It keeps the balls inside the tubes. In order
to open the tubes and release the balls, it can be moved toward the robot.
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In Figure 5.6 all of the above described components are set together to build
the final game board.

Figure 5.6 | Assembled game board for Connect Four. Seven tubes, two
stands and a tank build together the game board. The tubes and the stands are
connected with t-profiled guide rails. The tank is placed below the tubes.

The balls, shown in Figure 5.7, are adjusted in size and weight ensuring that
the robot can grab and insert these playing pieces properly and that the micro
switch is activated when a ball is dropped into a tube.

Figure 5.7 | Balls as playing pieces. To ensure that the playing pieces can be
grabbed and inserted properly from the robot, balls are used instead of discs. By
printing these with a 3D printer, the size and weight can be modulated easily.
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In order to receive the balls from a constant position, which is required for a
steered robot, a ramp (see Figure 5.8) that stores all balls for the robot and
forward always a single ball to the constant position is designed. In terms
of the fixed position, as well as the stands of the tubes, holes are placed on
the bottom plate of the ramp to provide that the ramp can be mounted with
screws.

Figure 5.8 | Ramp to pass the balls. All balls of a player for a game are stored
in the ramp. It forwards the balls individually to the end of the ramp. Thereby, the
robot can pick it up from a constant position.

A ramp is manufactured for the human player, too, which is the exact same
as the one for the robot.

The reset pushbutton switch, the rocker switch that determines the level of
difficulty of CarloConnect and the power supply circuit board, presented
later in this section, are brought together in a compact case. This case is
rectangular, providing slots on the top for the switches, a gap on the front side
for the cables of the switches and a recess, as well on the front side, to put in
the power supply circuit board. There are holes on the bottom of the inner
side of the case in order to mount it with screws. The case is presented in
Figure 5.9.
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Figure 5.9 | Case for switches and the power supply circuit board. Two
perspectives of the case are demonstrated. This case provides slots and recesses to
place the rocker switch, the pushbutton switch and the power supply circuit board,
which are used in this work.

5.3 Power supply circuit board

As the servo motors are only driven one at a time, the power supply of the
utilized Raspberry Pi suffice. Still, all servo motors require a connection to
the according power output of the computing platform. Since there are only
two 5.5V outputs, which is the necessary operating voltage, the access has to
be extended. The same applies to the ground connection. A circuit board for
the complete power supply is soldered therefore.

Many servo motors have a 3-pin female connector. For this reason, it is useful
to use male pin headers on the circuit board as output for the servo motor
connections. Besides the voltage and the ground, the servo motors require
an individual PWM signal. This port can be accessed via a solder connection
between the according male pin header of the connector of the servo motor and
a female pin header. The female pin headers are connected to output pins of
the Raspberry Pi. In order to distinguish the pin headers generally, for output
signals from the Raspberry Pi only female pin headers are used. Accordingly,
the male pin headers are only used for the output from the circuit board,
suitably for the connectors of the servo motors.

Each of the seven micro switches, the rocker switch and the pushbutton switch
need a ground connection, too. For this purpose, another nine male pin headers
are implemented on the circuit board. Figure 5.10 demonstrates an illustration
of the surface of the circuit board.
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Female pin header

Male pin header

3-pin constellation for
servo motor connectors

Figure 5.10 | Power supply circuit board. Via the female pin headers, that are
connected to the Raspberry Pi, this board provides a ground connection (1) for the
four servo motors, the seven micro switches, the rocker switch and the pushbutton.
In addition it supplies voltage (2) for the four servo motors. The female pin headers
(3) - (6) deliver individual pulse width modulation (PWM) signals for each of the
four servo motors.

5.4 Assembly

This section presents briefly the composed game board including all compo-
nents of this chapter and the Raspberry Pi 3 Model B (see Figure 5.11).

Figure 5.11 | Final mounted game board. All components described in this
chapter are mounted on a wooden plate to build the final game board which can be
used to play Connect Four with physical components. Balls of the color black are
for the robotic arm, balls of the color white are for the human player.
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Chapter 6

Implementation

A general overview of how the implementations of the game of Connect Four,
the MCS, the MCTS, the control of the servo motors, the read of the signals
from the micro switches and the website is presented in this chapter. Every-
thing, except the website, is implemented in C++. For the robotic arm, the
final program is run on startup via systemd as service, daemon. A daemon is
a process that continues running until the system is shut down [52]. Systemd
is the first process that is started during booting of the computer system. It
is a daemon process that manages the system including all user processes.

6.1 Connect Four

The game board of the game is realized as a two dimensional array. When the
main function is run, the game board is initialized. Then, in a loop, from the
player whose turn it is the move is requested. When the move is set, the game
state is checked to see if a final game state is reached. In case the player’s move
is a winning move, the loop breaks. Otherwise, the actual player is switched
so that it is the other player’s turn. At that the loop is repeated.

The function that checks if a final game state is reached is optimized by a
reduction of the amount of necessary comparison iterations. From initial 69
iterations (a check of every row, column and diagonal possibility), a reduction
of up to 88.4% of the performed iterations is possible. For this reduction, the
exact position of the row and column of the new set move is used. Thereby,
only 8 to 13 iterations, depending on the position of the new set move, need
to be carried out.
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6.2 Search algorithm MCS

When a move is searched with the MCS, the current game state and the time
limit is passed. The available time is divided by the amount of possible actions.
Thereby, each of the available actions has the same amount of time. When
the amount of available actions shrinks with the game progress, the time is
still split equally. For every available action of the current game state as many
simulations are performed as possible within the proportionate time limit.

In accordance with the description of the MCS in the theoretical fundamen-
tals, each simulation returns a result representing which player wins in the
respective simulation. This result is added to the win count, +1 if for a win
and -1 for a loss. When the time is up, a win ratio is calculated with the win
count and the amount of performed simulations. Thereupon the win count
and the amount of simulations is reset and simulations for the next possible
action are carried out. When for all possible actions the time limit is over, the
action with the highest win ratio is returned. Algorithm 1 demonstrates the
iterative process as pseudo code.

Algorithm 1 | The Monte Carlo Search approach.

1: procedure RunMCS(state, limit)
2: limit← limit/amountPossibleActions

3: for every possible action do
4: simulations← 0

5: wins← 0

6: while limit is not reached do
7: result← Simulate(state, action)
8: wins← wins+ result

9: simulations← simulations+ 1

10: ratio[action]← wins/simulations

11: return action with the highest ratio

6.3 Search algorithm MCTS

For a MCTS search, besides the passed variable for the MCS search, the time
limit and the current game state, the current player is passed, too. First, a root
node on the basis of the current game state is created and copied to another
new node. In terms of the iterative process, the current game state and the
current player are copied to variables. All of these three copies are marked as
temporary. The child nodes of a node are implemented as an array of pointers
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to nodes. The parent node of a node is referenced similarly with a pointer to
a node. Thereby, full access and referencing is possible.

In the loop, the amount of child nodes of the temporary node are checked. If
there are child nodes that are not expanded yet, randomly one of the left child
nodes is expanded by adding it to the list of child nodes from the temporary
node. As a child node represents a move of a given state, the corresponding
move is used for a simulation. The simulation returns the winner of it that
equals a score. This score is updated to all nodes that are traversed to get to
this child node. Additionally, the temporary variables, node, game state and
player, are reset to the initial values utilizing the root node and the passed
variables. Then the loop is repeated.

If all child nodes of the temporary node are expanded, the state of the node
is checked to ensure that it is no final game state. If it is a final game state,
all traversed nodes are updated and the temporary values reset. Otherwise,
the best of all child nodes of the temporary node is selected using the UCT
strategy for selection. The representing move of the selected child node is then
set in the temporary game state, the current player is switched, stored in the
temporary player variable, and the loop is repeated.

When the time limit is reached, the loop breaks and the best child node of
the root node is selected. Therefore, as final selection criterion, in accordance
with the studies of Chaslot [21], the Robust Max child is utilized. The move
that represents the child node that is selected in doing so, is returned. In
Algorithm 2 the principle of the algorithm is presented as pseudo code.
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Algorithm 2 | The Monte Carlo Tree Search approach.

1: procedure RunMCTS(state, player, limit)
2: new noderoot(state)

3: new nodetemp ← noderoot

4: statetemp ← state

5: playertemp ← player

6: while limit is not reached do
7: if unexpanded child node of nodetemp left then
8: new childNode← RandomChildNode(nodtempe)

9: add childNode to listChildNodes of nodetemp

10: result← Simulate(statetemp, childNode)

11: Update(result)
12: nodetemp ← noderoot

13: statetemp ← state

14: playertemp ← player

15: else
16: if statetemp is a final game state then
17: result← CheckWin(statetemp)

18: Update(result)
19: nodetemp ← noderoot

20: statetemp ← state

21: playertemp ← player

22: else
23: nodetemp ← UctSelect(nodetemp)

24: SetMove(statetemp, nodetemp)

25: SwitchPlayer(playertemp)

26: action← RobustMaxChild(noteroot)
27: return action

6.4 Controlling of servo motors

The Raspberry Pi 3 Model B only provides two hardware based PWM signals.
Hence, in order to control four servo motors, software based PWM signals are
required. Even though all of the four signals could be software based, still,
the two hardware based PWM signals are used for this work, too, as these are
more accurate than the software based PWM signals. In order to facilitate the
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implementation, a library providing functions for pin controlling, wiringPi10,
is applied. It supports the BCM283711 SoC, which is used by the Raspberry
Pi Model 3 B. The BCM2837 provides a crystal oscillator that generates clock
pulses of 19.2MHz with a minimum pulse width of 100µs.

When setting up hardware based PWM signals, the according pin must be
configured as PWM output. There are two kinds of PWM output signals that
can be produced with this library – the Balanced mode and the Mark-Space
mode. The Balance mode sends a combination of the clock pulses which results
in an average pulse height that is sent for during the whole period. In Mark-
Space mode, the output is set HIGH during a pulse and LOW for the rest of
the period. For the purpose of sending PWM signals for angular control of the
servo motors, the Mark-Space mode is used.

The frequency of the PWM signal can be configured by modifying the PWM
range and the clock divider. According to the formulas explained in the theo-
retical fundamentals (see Subsection 2.4.2), both the PWM range and the clock
divider can be calculated with the crystal oscillator’s clock and minimum pulse
width. This way, any desired frequency for the PWM signal can be set.

The MG90S servo motors are designed to be updated with a frequency of
50Hz. To achieve this frequency, first the period has to be calculated using
Equation 2.3.

T =
1

50Hz
= 20ms (6.1)

According to Equation 2.4, the PWM range can be calculated taking this
period further together with the minimum pulse width.

PWMR =
20ms

100µs
= 200 (6.2)

Last, the clock divider can be determined as in Equation 2.5.

PWMCD =
19.2MHz

50Hz · 200
= 1920 (6.3)

With these values the configuration can be carried out. Having all these prepa-
rations done, a PWM signal can be sent to set the angles for the servo motors.
Using the values above, angles from 0 to 180 ◦ can be set by passing values

10Website: http://wiringpi.com [24.01.20]
11Datasheet: https://cs140e.sergio.bz/docs/BCM2837-ARM-Peripherals.pdf [24.01.20]
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from 5 to 23 to the PWM function of the wiringPi library. Hence, there are
18 different adjustable positions – steps of 10 ◦ each.

In order to ensure that all positions of the tubes can be reached, the resolu-
tion has to be refined. This can be achieved by increasing the PWM range.
To maintain the frequency of the PWM signal, the clock divider has to be
decreased proportionally. Therefore, a coefficient of 2,6 is used resulting in a
PWM range of 520 and a clock divider of 739. With this resolution of the
PWM signal, values from 15 to 60 can be used for the PWM signal. Thus, 45
different adjustable positions are possible – steps of 4 ◦ each.

The servo motor that rotates the robot arm about the vertical axis of its ground
plate and the servo motor that moves it forwards and backwards are controlled
with the hardware based PWM signals. The remaining two servo motors are
consequently controlled with software based PWM signals (see Figure 5.2).

A software based PWM signal can be created by defining a pin and the desired
PWM range within the same function. With a PWM range of 200, the resulting
PWM signal has a frequency of 50Hz. By modifying the PWM range, only the
frequency can be configured. The resolution of a software based PWM signal
cannot be configured with this library. Hence, only values from 5 to 23 can
be used for the PWM signal to set angles from 0 to 180 ◦ – again in steps of
10 ◦ each. These should suffice for the servo motor that moves the robot arm
in vertical direction and the servo motor that opens and closes the gripper.

To make sure that the software based PWM signal is sufficient accurate, a
digital waveform viewer, piscope12, is used to investigate the outputs of the
utilized pins. A screenshot of three different simultaneously tested signals is
presented in Figure 6.1, showing that the signals are very accurate if no other
task is run at the same time. Thus, for the purpose of controlling servo motors,
the signals are accurate enough and can be used for robot arm.

For smooth movements of the servo motors, a function is implemented that
increases or decreases the position of the servo motors iteratively. Therefore,
the old and the new positions of the servo motors must be passed to the
function.

Due to the low resolution of the software PWM signal (the inaccuracy about
the according angles), the backlash between the joints and the links and the
limitation of the mechanical movements of the robotic arm, the positions (val-
ues) of the servo motors for the positions required for the game play are not
determined with the inverse kinematics, but with testings instead.

12Website: http://abyz.me.uk/rpi/pigpio/piscope.html [25.01.20]
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Figure 6.1 | Scope of a software based pulse width modulation (PWM)
signal. Three different software based PWM signals on three different pins are
produced and observed with this scope in terms of the accuracy. Pin 23 has a
frequency of 100Hz and a pulse width of 2ms. Pin 24 has the same pulse width
but half the frequency, 50Hz. Pin 25 has half of both values compared to Pin 23, a
frequency of 50Hz and a pulse width of 1ms.

6.5 Signal processing with switches

When the human player inserts a ball into one of the seven tubes of the game
board, the selected tube has to be registered by the program. Therefore the mi-
cro switches are integrated. These are placed at the top of each tube, whereby
they are activated when a ball is inserted, regardless of the game state.

To receive a signal when a micro switch is activated, a signal has to be passed
to the micro switches, that is forwarded when a micro switch is in the activated,
pressed, state. At the same time, when the micro switches that are not pressed,
a signal unequal to the activation signal must be forwarded. As activation
signal a LOW signal, the ground, is used.

Out of the three available pins from the micro switches (see Subsection 2.4.1),
only two are utilized. The normally opened channels are connected to the
ground of the Raspberry Pi, the common terminals are connected to individual
pins of the Raspberry Pi that are initialized as input pins. Applying the same
library as for the servo motors, the wiringPi library, this initialization can be
done with a single function respectively. In order to ensure that while the
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micro switches are not pressed the input signal is HIGH, not LOW, the input
pins must be initialized further by activating on-board pull-up resistors for
each input pin. Therefore, another function can be used. This is necessary, as
the normally closed channels are not wired and thus the input signal can be
arbitrary – HIGH or LOW.

The rocker switch for the adjusting the level of difficulty of CarloConnect
is implemented similarly. Therefore, again the wiringPi library is applied.
The common terminal of the rocker switch is connected to the ground, the
two terminals are individually connected to pins, which are initialized as input
pins with a pull-up resistor activated. This way, three states can be defined:
(1) terminal one pulled-up & terminal two pulled-up, (2) terminal one LOW &
terminal two pulled-up and (3) terminal one pulled-up & terminal two LOW.
For (1) a time limit of 100ms is set, for (2) 1000ms and for (3) 5000ms.

Moreover, to restart the game, a pushbutton switch is integrated into the game
board. With an implementation equal to the other switches, a LOW signal
is transferred when the pushbutton switch is pressed. In order to ensure that
the game can be restarted at any time, an interrupt function (from wiringPi)
can be initialized. It registers a desired function to received interrupts on
a specified pin. Within the interrupt function, the interrupt can be further
configured to be either triggered at falling edges, at rising edges or at both
kinds of edges. As a ground signal is transferred when the pushbutton switch
is activated, in this case falling edges are defined in the interrupt function to
trigger the interrupt. When it is triggered, the desired function is called – in
this case, the game is reinitialized, meaning that the board is cleared and the
player to move is reset.

To further ensure that the interrupt is triggered only once per activation, a
timer based debounce is implemented for the pushbutton switch.

6.6 Parallelization

The Raspberry Pi 3 Model B has a quad-core processor and thus four cores.
By default, a program runs on a single thread – on a single core. In order to
utilize more than one of the cores for the running code, certain parts of the
code, in particular loops, can be spread over multiple threads. Open Multi-
Processing (OpenMP)13 is an application programming interface (API) that
supports multiprocessing programming, inter alia, in C++ on many platforms
and operating systems. It consists of directives that influence run-time behav-
ior. Thereby, in a for loop for example, the task (iterations) is divided by the
amount of desired threads to be used and partially distributed of them. With
software profiler, compute-intensive loops can be found that may be worth to
parallelize. The to be parallelized loops must be independent without loop-
13Website: https://www.openmp.org [07.02.20]
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carried dependencies to ensure that the threads can safely execute in any order,
that can be arbitrary.

For the purpose of this work, only few operations can be parallelized, as most
of the loops carry dependencies that require a sequential iteration. For further
parallelization, multiple MCTS instances could help, to find reliable and good
decisions. Such adaptations are complex and would go beyond the scope of
this work.

6.7 Website – https://carloconnect.com/

In accordance with the rest of this work, a Raspberry Pi 3 Model B is used to
host a web server providing a Hypertext Transfer Protocol (HTTP) website14.
On this website, a description about the purpose of the website, a short survey,
a Connect Four game board and buttons to restart the game and to set different
computing time limits for the MCTS - Easy (15ms), Moderate (60ms) and
Hard (1500ms) - are given.

The web server is set up with Node.js, a cross-platform JavaScript runtime
environment. It is designed to execute server-side JavaScript code, producing
dynamic web page contents before the page is sent to the client’s web browser.
The website is designed with HTML, CSS, JavaScript and jQuery.

As CarloConnect is considered to be strong (due to preliminary testings),
the human player always starts first, providing better win chances for him (see
Section 2.1). When the human player selects a column, the lowest unoccupied
slot of the selected column is marked with the human player’s color. There-
upon, the game state and the selected time limit for the MCTS are sent as a
HTTP POST request to the server, the Raspberry Pi. With a HTTP POST
request, the web server accepts data enclosed in the body of the request mes-
sage. This data can thereby be stored or computed on the server [53]. This
website uses, as is common, JavaScript Object Notation (JSON) in order to
transfer data. The game state and the time limit are therefore joined to a sin-
gle JSON object, which is then sent via a HTTP POST request to the server
where they are parsed to their original object types.

In order to operate with the received game board and the time limit, all values
are saved in a single text file, whereby each value has its own line. Line 1 to 42
are the frames of the game board and line 43 is the time limit. To ensure that
each request is saved in an individual text file, the text files are tagged with
time stamps including milliseconds. The MCTS script is launched server-side
using the unique time stamp as an argument, which is used to read in the
according text file at the beginning of the search to initialize the game board

14Link: https://carloconnect.com/

41



6 Implementation

and set the time limit. When the time limit is reached, the MCTS script
returns the selected move.

A HTTP POST request is not only capable to receive data, but also to send
data as response to the request. With this functionality the returned move
is sent back as response to the client’s browser. According to the received
response, the corresponding slot of the browser’s game board is then marked
with CarloConnect’s color. After each move from the human opponent and
CarloConnect the game board is checked for whether a final game state is
reached. In the case of a final game state, another HTTP POST request is
sent and the human player’s input is deactivated until the game is restarted
via the restart button. The HTTP POST request saves the winner in a text
file, that corresponds to the set time limit, on the server. All HTTP POST
requests are implemented with Asynchronous JavaScript and XML (AJAX)
calls. This way, the client’s browser can send and retrieve data from a server
asynchronously in the background.

When multiple clients are playing at the same time, multiple HTTP POST
requests to get a move from CarloConnect and thereby multiple searches
may be launched at the same time. For time limits of 15ms and 60ms (diffi-
culty Easy and Moderate), temporal overlap is unlikely. For the time limit of
difficulty Hard, 1500ms, temporal overlaps become probable. As a search runs
as a single thread on a single core and the Raspberry Pi 3 Model B offers four
cores, the threads are distributed automatically by the system. Still, a search
with a low time limit may be assigned to a core where a move of the difficulty
Hard is launched. In order to avoid this overlap, one of the four cores of the
Raspberry Pi is programmatically isolated from system assignments and only
used for searches of the difficulty Hard. Hence, the three other cores are avail-
able for searches of small time limits reducing the impact of temporal overlaps
and thus the potential of lag for games of low difficulty. To further ensure that
in the case of a lag enough simulations are conducted for the selected difficulty
(computing time limit), a minimum amount of simulations is set as second limit
condition for the searches. Only if the time limit and the minimum amount
of simulations are reached, the search ends. The minimum amount of simula-
tions is the average amount of simulations CarloConnect conducts within
the respective time limits when there is only one search running, determined
in preliminary testings (175 simulations at Easy, 840 at Moderate and 31500
at Hard).

The survey provided on the website contains two questions, one about the game
feeling and one about the age of the client. The answers of these questions are
saved analogously to the final game state using a HTTP POST request and
saving the content in a text file server-side.
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Results and discussion

To evaluate the two search algorithms, they are tested in performance by
conducting games where they play against each other. This way the stronger
AI can be determined. The stronger AI is then further evaluated by being
placed against human opponents. The results of these tests are presented in
this chapter.

7.1 Comparison of the two approaches

The respective strength of the search algorithms is assessed by the MCTS’ win
rate and further investigated by measuring the amount of simulations that are
performed to find the first move.

7.1.1 The win rate of the MCTS

The results, shown in Figure 7.1, prove that the MCTS clearly outperforms the
MCS. The more computing time is given, the stronger the MCTS becomes in
comparison with the MCS until it wins all of the games. This shows that due
to the lack of tactical insight of the MCS algorithm, the opponent’s behavior
does not receive sufficient consideration, which is why the potential of MCS’s
performance is limited. With a rising degree of complexity of a game, the
importance of the tactical insight grows. Therefore the MCS does not suffice
anymore and the MCTS begins to lead instead. This applicability is also
described in a work [8] about mastering the game Go.

In addition, the results show that for each of the differently set computing
times the win rate of the MCTS is consistently lower if the MCTS starts
first, even when the standard error is taken into account. Investigations of
the first moves of the search algorithms prove that in all of the tests, both
algorithms always start with a move in the middle column, which provides
the potential of a safe win (see Section 2.1). Yet, the quantitatively stronger
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Figure 7.1 | Results of performance tests of the Monte Carlo Tree Search
(MCTS) algorithm playing Connect Four against the Monte Carlo Search
(MCS) algorithm. Tests with different conditions are conducted where the starting
player (MCTS or MCS) and the amount of available computing time as limitation
for the algorithms are varied. Five times 100 games are performed for each test.
The average win rates of the MCTS are represented as bars in the chart. Their
corresponding standard deviation is plotted as horizontal lines.

algorithm, the MCTS, wins less if it starts, which contradicts the conclusion
Allis [11] that the win chances are the highest with a start in the middle
column. According to the results, the opposite occurs as the MCTS wins more
often as second player after the MCS made its first move selecting the middle
column. One might expect that while the algorithms do not play perfectly, as
required in the theorem, the approach that overall performs better still should
tend to perform better especially when it gets the first move, which is not the
case. This behavior could be caused by the impact of the early and the late
game and the performances of the approaches during these phases or by their
imperfect choice of moves and must be investigated more precisely for further
analyses. Moreover, the standard error of the tests where the MCTS starts
first is significantly higher than the standard error of those where the MCS
makes the first move, which could be related to the behavior mentioned above.
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7.1.2 Simulation Speed

In order to compare the tests concerning the simulation speed in consideration
of the different set computing time limits, the simulation speed is specified in
the unit simulations per second. This unit is calculated by dividing the set
computing time limit by its respective achieved amount of simulations (see
Figure 7.2).
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Figure 7.2 | Comparison of the amount of simulations the Monte Carlo
Tree Search (MCTS) and the Monte Carlo Search (MCS) conducted per
second during performance tests. The analysis of performance tests that differ in
a computing time limitation show that there is a significant difference in the amount
of simulations of the two tested search algorithms. For evaluation the amount of
simulations conducted for a first move of each algorithm is used and transformed into
simulations per second. With the values of each test (represented as dots in the chart)
a characteristic curve is built which is presented in the graph. The corresponding
standard deviation of the values is plotted as horizontal lines.

This resultant graph shows that the MCTS performs approximately two times
less simulations than the MCS, which is due to its iterative tree building pro-
cess. The decrease of the amount of simulations the MCTS can perform per
second with increasing computing time can be explained by the fact that the
longer the MCTS algorithm computes, the bigger the search tree grows. Thus,
the branches get longer and so does the time that it takes to reach a leaf node
where a simulation is conducted. The reason why the rate of decrease drops
with higher computing time is the finite nature of Connect Four. When a
branch reaches its maximum length, which is defined through the maximum
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amount of turns – 42 in this case – it cannot be expanded any further as a final
game state is reached at this point. Consequently, the time it takes to traverse
the tree up to a leaf node cannot exceed the time for a full traverse, which
is why the slope of the MCTS’s simulation speed seems to be monotonously
increasing and converging to 0 for increasing computing time.

On the other hand, the simulation speed’s decrease in the range of small com-
puting times for the MCS algorithm can be attributed to overhead operations
that are run once or at least only few times during a search, such as initializa-
tion or calculations. These operations have an impact on the average number
of simulations per second when the computing time is much less than one
second. When the computing time is higher and thus also the amount of simu-
lations, the impact of the above mentioned operations approaches zero, which
explains the nearly constant value of the MCS’s curve for a computing time
greater than one second.

7.2 CARLOCONNECT versus humans

In this second evaluation phase, CarloConnect is placed against human
opponents to see whether CarloConnect is capable to play on a human
level. Three different difficulties are thereby tested to investigate a wide spec-
trum of the AI’s strength. Therefore, the win rates of the human player and
CarloConnect as well as the tie rate are calculated dividing the amount of
the respective event by the total amount of games played for the set computing
time – as done for the results of Section 7.1. The results including these rates
of the games that are played on the website are presented in Table 7.1.

Table 7.1 | Win and tie rates of CarloConnect playing against human
opponents. For three different computing times, games are played via the website
(see Section 6.7), whereby in every played game, as an advantage for the human
player, the human player starts first. The resulting win and tie rates are presented
in this table.

Computing
time (ms)

Total games
played

Win rate (%),
human player

Win rate (%),
CarloConnect

Tie (%)

15 505 21.1 78.9 0.0
60 235 10.9 89.1 0.0
1500 536 5.2 94.4 0.4

With a computing time of only 15ms (difficulty Easy), CarloConnect
already wins about 79% of the games. At the difficulty Moderate, which
provides 60ms for CarloConnect to search for a move, the win rate for
the human players almost halves from 21.1% (difficulty Easy) to 10.9% –
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CarloConnect wins approximately 10% more games at this level of diffi-
culty. From the difficulty Moderate to Hard the human players’ win rate is
slightly more than halved, again. Human players only win 5.2% of the games
at this stage, though rarely managing to cause a tie with a rate of 0.4%.
These results demonstrate that CarloConnect can compete against human
players and even outperform most of them.

As for the tests against MCS, the more time is given, the stronger the MCTS
based AI becomes. The time limit steps of the games of the website are big
though, from Easy to Moderate a factor of 4 is applied, from Moderate to
Hard a factor of 25. As a result, the human players’ win rate always shrinks
by half for each step whereby CarloConnect’s win rate reaches 94.4%. The
factor that would be required to half the human players’ win rate again can
be expected to be large, thus leading to move searches that may take minutes.

In total 1276 games are played, whereby most of the games are played at
the difficulty Easy and Hard. The high amount of played games at the first
level (difficulty Easy) may be attributed to human players that do not defeat
CarloConnect at this level and thus try it many times. Those who win,
experienced players, try the next level and mostly, after some tries, manage to
win there, too, going to the last level. At the last level, the difficulty is high
enough to thwart those experienced players which hence have to play many
games at this level to accomplish a defeat of CarloConnect.

The results of the additionally provided survey about the age of the players
and their game feeling are shown in Table 7.2.

Table 7.2 | Short survey for human players that played against Carlo-
Connect. In addition to the game of connect four, a short survey is provided on
the website (see Section 6.7). The player’s age and opinion about the game feeling
is thereby listed.

Age < 18 18-24 25-39 40-65 > 65 Total
Amount players 1 36 27 8 0 72
Normal game feeling 0 33 22 7 0 62
Artificial game feeling 1 3 5 1 0 10

Altogether 72 players submitted the survey, whereby most of them are of the
age 18 to 39. Ten out of the 72 human opponents, about 14%, noticed a
strange behavior of the AI’s playing. This may be caused by an unusual
behavior of CarloConnect in the late game. In a progressed game state,
where only few moves and thus options are left, when CarloConnect cannot
win anymore and is sooner or later forced to make his move in a column that
leads to a win for the human opponent, CarloConnect chooses to rather
give up by making his next move in the column that opens a win opportunity
for the human player instead of playing a few more defensive moves before
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being forced to make the game losing move. In Figure 7.3 such a scenario is
demonstrated.

X

X

Figure 7.3 | Unexpected behavior of CarloConnect in progressed
games. In the presented scenario red (the human player) wins with a horizon-
tal combination. The last two moves are marked with an X. Instead of making a
defense move either in the free slot on the top left side or on the top right side,
yellow (CarloConnect) chooses to make its move in the column that opens a win
opportunity for red instead.

Having the opportunity of selecting two other columns instead of the one that
leads to a loss when it is the opponent’s turn, CarloConnect, yellow in
Figure 7.3, still selects the column that opens a win chance for the human
player, red in Figure 7.3. This decision can be attributed to the possibilities
that are given if the column that opens a win opportunity for red is selected
first: even though red can win within the next move, red could also chose
two other columns, thus there are three possible outcomes for the subsequent
move. In the scenario of playing defensive first, two moves later yellow would
end up in the same slot, having filled the other possible columns first. This
leads to a single possible unavoidable outcome where red selects the column
that leads to a win, as it is the only column left. In this respect, not playing
defensive can be considered as better, but seems unusual and thus strange for
a human player.
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Conclusion and outlook

In this study experiments are conducted to compare two Monte Carlo based
approaches, MCS and MCTS, in order to investigate their performance in the
game of Connect Four. The experiments evince that when it comes to a direct
comparison, the MCTS outperforms the MCS due to a lack of tactical insight
of the MCS, even though the total amount of simulations is comparatively low.

Concerning the behavior in performance of the MCTS, as expected the ac-
curacy increases with the available computing time. Still, it remains unclear
why the MCTS wins more often if its weaker opponent MCS starts first as
this should provide a lower win chance for the MCTS according to the game
solution found in the literature. In the future, further investigations can be
carried out to find out whether this phenomenon is hard- or software based or
if the win expectations for the second player do not depend on the first player’s
move in the case of imperfect playing.

Regarding the fact that the MCTS needs an amount of memory that depends
on the number of nodes that are created during a search, the embedded system
must fulfill the requirement of sufficient memory. In this work a Raspberry Pi
3 Model B is utilized which supplies 1 gigabyte of memory, which is why the
MCTS can be used with no doubts and is thus the better approach to select.
Common small computer platforms (like most of the Arduinos) often only
provide little memory from 2 to 32 kilobytes, which would limit the MCTS in
expanding the search tree, as each node of the tree is an instance that requires
memory. This leads to a small possible amount of simulations which would
result in a low accuracy of the search’s result, wherefore the MCS would be
the better choice.

Nevertheless, considering the strength of the MCTS, a computing platform
that fulfils the requirement of the MCTS would be chosen, which is why the
final program CarloConnect uses the MCTS based approach.

Using the website, many human players can play against CarloConnect
simultaneously from anywhere. Thereby, many game results can be collec-
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tively gained within short time. Using the robotic arm, the same results can
be achieved, but this approach takes longer as every game has to be accom-
plished one by one. Overall, the games against human opponents show that
CarloConnect performs strong enough to reach a win rate of 94.4% against
human players having 1500ms computing time. The required time in order
to achieve a win rate of 100% on a Raspberry Pi 3 Model B remains to be
investigated.

The behavior of CarloConnect is mostly described as normal. 14% of the
players note a strange behavior that can be attributed to a different treat-
ment of late game situations, where the loss of CarloConnect is clear.
CarloConnect stops playing defensive at some point referring to probabili-
ties and thus picking a move that leads to a loss, even if there are other columns
available for selection. For future work, the behavior of CarloConnect
could be further analysed by conducting games where CarloConnect plays
against professional Connect Four players, whereby tactics could reveal other
anomalies.
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